	sembly	Solder Paste Test Program (SPTP)
	Alloy: 63	576 Solder Paste
Recret Alloy:63/37 MESH:325/+500 Viscosity (Keps):650 MEAL Content:89.550 Mean Alloy:63/37 MESH:325/+500 Viscosity (Keps):650 Mean Alloy:63/27 Mesh:325/+500 Viscosity (Keps):650 Mean Alloy:63/27 Mesh:325/+500 Viscosity (Keps):650 Mean Alloy:63/27 Mesh:325/+500 Viscosity (Keps):650 Mean Alloy:63/27 Mean Alloy:63/27 Viscosity (Keps):650 Mean Alloy:63/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Viscosity (Keps):650/27 Visc	QC/Lot#	#: 23826 Mfg Date: 7/18/2012
For additional information refer to Power	Section 1: Section 2: Section 3: Section 4:	Summary Standard Tests Slump Data Reflow Data

Summary

Leaded paste that is no clean, pin probable and halogen free. Attributes compared to the other products that were tested are below:

- * Minimal Graping
- * Low slump with low viscosity
- * Excellent wetting
- * Great open time with tack life over 72 hours
- * Fantastic Cosmetics

www.FCTAssembly.com

ECT

1309 North 17th Avenue | Greeley, Colorado 80631 P: 970-346-8002 | F: 970-346-8331

Solder Paste Test Program

Standards Tests NC676 Solder Paste

Metal Loa	ading	Viscosity	
Metal	89.4%	Brookfield Malcom	625 Kcps 130 Pa∙s
Silver Chr	omate	Copper Mirro	or

Pass

Pass (No evidence of mirror breakthrough)

IPC Class	sification		Flouride	
ROLO			Pass	
Tack Tes	sting			
0 Hours	24 Hours	48 Hours	72 Hours	96 Hours
104.48	111.12	112.02	115.28	80.68
SIR			Electromigratio	n
Pass			Pass	

Cold Slump

Bridging Quantity

Pad	Defect Count
0.10mm	0
0.15mm	0
0.20mm	0
0.225mm	0
0.25mm	0

IPC Slump Results

Cold Slump Test Board

	0.10mm	0.15mm	0.20mm	0.225mm	0.25mm
BEFORE					
AFTER					

Hot Slump

Bridging Quantity

Pad	Defect Count
0.10mm	0
0.15mm	0
0.20mm	0
0.225mm	0
0.25mm	0

Hot Slump 0.20 150C slump fail

IPC Slump Results

Hot Slump Test Board

	0.10mm	0.15mm	0.20mm	0.225mm	0.25mm
	Carlos alline construction in a				
AFTFR					
/					

N/A for Leaded Paste

Solder Paste Test Program

Reflow Data (Graping)

NC676 Solder Paste

Graping Inspection

Measure the performance of graping on 96 pads with ½ being mask defined. Pad size varies from 7X7 mil to 12X12 mil . When counting the pads we identified the largest feature pad that showed the graping effect then counted all pads at this size and smaller. These are recorded in the tables below. Pads were on four different locations of the board.

High						
CRD G1	Brd 1	Brd 2	Brd 3	Brd 4	Total	
G7 G10 G15	N//	A for	Leade	ed Pa	ste	Graping Comparison Product Total Grapes
Low						NC676 32
CRD G1	Brd 1	Brd 2	Brd 3	Brd 4	Total	Competitor A24Competitor B61
G7 G10 G15	N//	A for	Leade	ed Pa	ste	
Optin	nal					
CRD	Brd 1	Brd 2	Brd 3	Brd 4	Total	
G7	5	3	2	0	10	
G10	4	2	0	2	8	
G15	3	3	0	0	6	
FCT 1309 No P: 970-3	Asse orth 17th 346-8003	embly Avenue 2 F: 970	WWV Greeley, -346-8337	w.FCTAs Colorado 1	sembly.c 80631	com

NC676 Solder Paste

Test Program

Solder Paste

Wetting/Spread Inspection Test

In each of the wetting/spread ares we identified the number of lines that had one or more bridge of the solder bricks. The maximum number of lines is 24.We then measure the most bricks that were bridged in one line. These results are shown below.

_	-	

Board	Total Lines Most on 1	
1		
2		
3	N/A for Loadod Pasto	
4	N/A IUI Leaded Paste	Wetting Comparison
Total		
		Product <u>Total</u> Most
Low		NC676 24 15
Deced		
Board	lotal Lines Most on 1	Competitor A 24 15
1		Competetor B 24 15
2		
4	N/A for Leaded Paste	
Total		

Optimal

Board	Total Lines	Most on 1
1	24 out of 24	15 out of 15
2	24 out of 24	15 out of 15
3	24 out of 24	15 out of 15
4	24 out of 24	15 out of 15
Total	96 out of 96	60 out of 60

Paste Pullback (Solder Ball)

Measure the performance by volume of the solder paste to pullback on a pad. The start of the volume was at 500% with the maximum being 1250%. Any solder ball that was found not coalescing with the rest of the solder was failed.

i i i gi i		
Board	Pad Size	
2 3		
4 Average	N/A for Leaded Paste	Paste Pullback Comparison
Low		Product <u>Average</u>
Board	Pad Size	NC676 1150%
1		Competitor A 950%
2 3		Competitor B 1225%
4	N/A for Leaded Paste	
Average		

Optimal

High

Board	Pad Size
1	1225%
2	1225%
3	1225%
4	925%
Average	1150%

Bridging Inspection

We measured the number of bridge occurences and recorded in the tables below. We should note that the .1m m pads had minimal paste release which led to 0 bridges. Thus this pad offered no value in this study.

High

Board	Defect Count	
1		
2		
3	N/A for Looded Deste	
5	N/A for Leaded Paste	
Total		
Low		

Board	Defect Count
1	
2	
3	N/A for Loaded Daste
4	N/A IUI Leaueu Paste
Total	

Optimal

Board	Defect Count
1	0
2	4
3	0
4	5
Total	9

