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The technological advancement of component and PCB technology from through-hole to surface 

mount (SMT) is a major factor in the miniaturization of today’s electronics. Smaller and smaller 

component sizes and more densely packed PCBs lead to more powerful designs in much smaller 

product packages. With advancement, however, comes a new set of challenges in building these 

smaller, more complex assemblies. This is the challenge original equipment manufacturers 

(OEM) and contract manufacturers (CM) face today. 

 

One of the challenges facing OEMs and CMs in building assemblies with miniature components 

is the stencil printing process. Many of today’s designs incorporate a mix of miniature and much 

larger components. Manufacturing engineers are faced with the dilemma of choosing a thinner 

stencil foil to ensure solder paste release for the miniature components or a thicker foil to ensure 

sufficient solder volume for the larger components. With a standard laser-cut stencil using 300 

series stainless steel, one would have to make that difficult choice. An electroformed stencil 

gives more options in balancing release for miniature components and volume for larger ones 

due to its ability to successfully print smaller components without reducing the foil thickness. 

However, many have difficulty justifying the 3X-4X cost increase and added schedule delay for 

an electroformed stencil, especially with more and more companies moving to a low-volume, 

high-mix array of jobs. Faced with these two options, is electroformed technology the right 

solution or have technological advancements allowed new developments in stencil technology? 

  

This article discusses new developments in stencil laser and material technology and shows how 

these advancements, when combined, provide comparable and cost-effective alternatives to 

traditional electroformed stencils.  The results are improved yields, cycle time reductions, and 

significant cost savings. 

 

Brief History of Stencil Technologies 

Before stencil lasers were developed, the only manufacturing methods for producing solder paste 

stencils were silk screening and chemical etching. The etching process was time consuming and 

hazardous due to the powerful chemicals used to etch the metal. There also were limitations as to 

how small a stencil aperture could be effectively produced during the etching process. 

Chemically etched stencils typically were limited to component pitches no smaller than 0.025" 

and registration of the stencil apertures to the SMT pads was not precise enough as component 

sizes decreased. These limitations would not allow chemical etching to keep pace with the rapid 

advancements in component and PCB design.  

 

In the early 1990s, lasers started being used to produce solder paste stencils. This new 

technology was a major improvement over traditional silk screen and chemical etching in 

producing stencils quicker, cheaper, and with much smaller aperture sizes. The motion systems 

on the laser systems also provided a much higher positional accuracy for the stencil apertures, 



leading to much better alignment between the stencil and PCB. With these significant 

improvements, component pitches down to 0.016" could easily be cut. 

 

While these laser systems are capable of producing high-quality solder paste stencils for the 

majority of assemblies, advancements in component and PCB design continued. With the 

introduction of components like “micro BGA (µBGA),” “quad flat no-lead (QFN),” and 0201s, 

laser-cut stencils struggled to produce acceptable solder paste release for these very small 

apertures without a reduction in the thickness of the stencil foil. This was not always an 

acceptable solution as the larger components would have insufficient solder volume. Enter 

electroformed technology.  Electroformed stencils are produced by electroplating Nickel on top 

of a Stainless Steel substrate under various specialized and challenging conditions.  The plated 

Nickel film is later removed from the Stainless Steel substrate resulting in the Nickel foil that is 

the electroformed stencil.  This manufacturing process produces an exceptionally smooth stencil 

aperture wall compared to chemically etched and traditional laser-cut stencils.  The smoothness 

of the aperture wall is a vital component of a high performance stencil allowing printing of 

smaller apertures without reducing the foil thickness.   

 

For many years, electroformed stencils have been the premier solution for these new, challenging 

assemblies. However, the assembly industry as a whole is being driven to turn product faster and 

cheaper. Electroformed stencil prices typically are 3X-4X higher than traditional laser-cut 

stencils and it takes longer to produce an electroformed stencil. In most cases, the turn time is 3 

to 4 days and this technology is limited to only a few shops that have the knowledge and 

expertise in plating very thin Nickel foils.  Many OEMs and CMs need stencils produced and 

shipped the day the order is placed in order to meet their schedule. The higher cost and longer 

lead-time of electroformed stencils make it more difficult to meet the schedule and cost demands 

of today’s assemblies. How does one determine if a traditional laser-cut or electroformed stencil 

is required?   

 

There are two formulas used to determine whether or not the smallest aperture on a stencil will 

have acceptable solder paste release with a given stencil technology.  These are surface area 

ratio and aspect ratio.  The surface area ratio can be used for any stencil aperture shape and is 

the contact area between the paste and PCB pad (L x W) divided by the contact area between the 

paste and stencil ((2 x L x T) + (2 

x W X T)).  The aspect ratio is 

limited to rectangular, square, and 

round stencil apertures and is the 

smallest dimension of an aperture 

(width (W) for rectangles and squares, diameter for circles) divided by the thickness (T) of the 

stencil foil (historically the aspect ratio has been limited to 1.5 for rectangles and 2.5 for squares 

and circles).  Since the majority of stencils have a mixture of aperture shapes, including custom 

shapes (homeplates) for 2-pin components, the surface area ratio formula is the most accurate 

when determining which stencil technology to utilize.  

 

To successfully print small components without reducing the stencil foil thickness, the stencil 

must be capable of producing acceptable solder paste release at as low a surface area ratio as 

possible.  The historical limit of chemically etched and traditional laser-cut stencils has been a 



surface area ratio of 0.66.  In the case of electroformed stencils, the limit has been improved to 

0.5.  The lower surface area ratio limit of electroformed stencils is the reason for selecting this 

technology when facing challenging assemblies. 

 

With all of the advancements in component and PCB design, has advancement in the stencil 

industry remained stagnant or has technological improvement benefited this industry as well? Is 

the stencil industry now in a better position to provide solutions for printing miniature 

components while meeting customers’ tighter delivery and cost requirements? 

 

 

New Developments in Stencil Laser Technology 

Stencil laser technology has seen continuous advancement over the past 10 years. The majority 

of advancement has been in linear motor technology, leading to improvements in the cutting 

speed of stencil lasers.  Until recently, the source of the laser beam has remained the same with 

reliance on lamp pumped technology. The lamp pumped technology is comprised of flash lamps, 

YAG rods, mirrors, and focal lenses. With this technology, the smallest diameter laser beam 

possible was approximately 40 µm. While this diameter beam is fine for the majority of stencil 

designs, the energy density with a 40 µm beam diameter is not high enough to produce the 

smoothest aperture walls when cutting stencil apertures for miniature components.  

 

In the past two years, there has been a major leap forward in laser 

technology. The most significant development is the introduction of 

the Single Mode CW Ytterbium Fiber laser (“fiber laser” for short). 

The new fiber lasers produce shorter pulse widths, higher 

frequencies, and have a fully programmable pulse/pause ratio. In 

addition, they produce a smaller laser beam diameter of 19 microns 

with a corresponding 4X 

increase in energy density. 

The 4X increase in energy 

density significantly 

increases the laser beam’s ability to cut through the 

metal and the result is a much smoother aperture wall 

(see picture at left). 

 
          

New Developments in Stencil Material Technology 

Along with advancements in laser technology, there also have been advancements in stencil 

material technology. For many years, laser-cut stencils used either 300 series stainless steel or a 

higher nickel alloy (Invar Alloy 36, Alloy 42) for the stencil foil material. These are good 

solutions for the majority of assemblies, but their paste release performance reduces considerably 

when printing apertures with surface area ratios below 0.66. As a result, one would have to either 

increase, “overprint,” the aperture sizes when selecting a thicker foil or reduce the foil thickness 

for acceptable prints.  

 

Overprinting miniature components, however, is not always a guaranteed solution since the 

crucial surface area in the surface area ratio formula is the common metallic surface area 

between the SMT pad and the stencil aperture. If a PCB has a CSP component with a 0.010" 



diameter pad and the stencil overprints with a 0.012" diameter aperture, the common metallic 

surface is still limited to the 0.010" diameter of the SMT pad. The additional paste beyond the 

0.010" limit of the SMT pad is not in contact with the metallic surface and, therefore, does not 

contribute to pulling the paste from the stencil. 

 

Advancements in stencil material technology include 

new stencil materials specifically designed for stencil 

laser-cutting. The Fine Grain material (distributed by 

Ed Fagan, Inc.) has a much finer grain structure (see 

picture at right) when compared to standard 300 

series stainless steel and alloys, and contain smaller 

and fewer voids in the material. With smaller and fewer voids, the solder paste does not adhere 

as easily to the stencil walls. This is primarily due to the micro size of the voids (in some cases 

smaller than the particle sizes in the solder paste) that makes it more difficult for the solder paste 

particles to get a grip on the stencil walls. When the solder paste is pulled from the stencil as the 

PCB drops, release is easier and less paste residue is retained in the stencil. The easier release 

allows for the printing of smaller stencil apertures, without reductions in foil thickness, and the 

reduction in paste residue allows for an increase in the number of prints before having to clean 

the stencil.  

 

In addition to improved paste release for smaller apertures and much cleaner paste release 

throughout the entire stencil, the finer grain structure of these new materials also produces a 

more defined aperture edge (see picture at left) when cut with a properly tuned laser beam. As 

the aperture size decreases, the importance of repeatable and 

accurate solder paste release rises. With miniature components, 

small fluctuations in solder volume have a much larger impact on 

solder joint reliability due to the minimal solder volume required. A 

more defined aperture edge, along with improved paste release, leads 

to more repeatable and accurate solder paste release.   

   

The new materials are a stainless steel composition and are rolled so thickness tolerances are 

extremely tight. They also have improved thermal conductivity as well as similar mechanical and 

corrosion resistant properties when compared to standard 300 series stainless steel. Stencil life 

and durability are similar to standard 300 series stainless steel stencils. 

 

 

Stencil Laser and Material Technology Advancements: Performance 

Technological developments in component and PCB design are beginning to outpace current 

stencil technology. Do these significant advancements in stencil laser and material technologies 

provide the current and future solutions the electronics assembly industry requires? That question 

is best answered through a design of experiments (DOE) comparing the new laser and material 

technologies with the standard stencil technologies available today. 

 

DOE: The Viability of New Stencil Laser and Material Technology 

The objective is to determine the viability of this new stencil laser and material technology and 

its impact on the current, and future, demands of the electronics assembly industry. 



DOE Details 

Test Items 

 

Lasers:  LPKF LPKF MultiCut (high-power Nd:YLF fiber laser , new technology) 

  LPKF SL 600 (lamp-pumped Nd:YAG laser, current technology) 

 

Materials:  New Fine Grain (UltraSlic™ FG) material 

      Slic™ material 

      Electroformed 

  Electroformed nickel sheet with laser-cut apertures 

  Rolled nickel sheet with laser-cut apertures          

SS 300 series 

 

Solder Pastes: Water Soluble – WS150 Type 3 and Type 5, WS157 Type 3 and Type 5 

  No-Clean – NC650 Type 3 and Type 5 

  Lead-Free – Sn100C Type 3 and Type 5, SAC 305 Type 5 

 

Test Equipment and Parameters 

 

Printer:  DEK 265GSX 

Blades: DEK 

Print Speeds: 50.8 mm/sec and 127 mm/sec 

Separation:      0.3 mm/sec and 7 mm/sec 

Print Gap:       0 (on contact) 

Stencil Clean: Every print 

Inspection: Koh Young KY-3030 3D 

 

Test Board 

 

 

 

 

 

 

 

 

 

 

 

 

Finish:   Electroless Nickel/Immersion Gold (ENIG) 

Surface are ratios:  0.17 to 15 

Pad count:   4,188 

 

The objective of the DOE is to determine the viability of the new stencil laser and material 

technologies. The results of the current technologies were as expected — of those, electroformed 



had the best solder paste release. How did the new stencil laser and material technology compare 

to current stencil technologies? 

 

New Fine Grain Performance 

The surface area ratio limit for electroformed technology is 0.5. While a significant improvement 

over standard laser-cut stencils, materials that offer improved performance at area ratios of 0.5, 

and below are going to be a requirement as component and PCB technology continues to 

advance.  

 

Stencil Technology Comparison:  Composite Results for all Solder Paste Types
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Solder Paste Volume 

The results above illustrate the print performance of the various stencil technologies over the 

entire range of solder paste types tested.  All were laser-cut on the new LPKF Multicut fiber 

laser, except the electroformed stencil which utilized traditional electroform technology.  The 

electroformed stencil was the performance baseline with acceptable paste volume % at a surface 

area ratio of 0.5.  The laser-cut electroformed nickel sheet had acceptable paste volume % down 

to 0.45, but its print performance quickly flattened out compared to the Fine Grain and 

electroformed stencils.  The Fine Grain stencil had acceptable paste volume % at 0.45 and its 

print performance continued to outperform electroformed as the surface area ratio increased.  

The performance increase down to a surface area ratio of 0.45 allows the printing of even smaller 

components without a corresponding reduction in the stencil foil thickness.  The result is 

additional solder paste volume for the non-miniature components, resulting in less rework and 

improved solder joint reliability. 
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Aperture Registration 

As component pad sizes continue to decrease, alignment accuracy between the stencil and PCB 

is becoming more critical. The adhesion of the solder paste to the SMT pad is the sole force 

involved in pulling the paste from the stencil. Since PCBs will tend to shrink during the 

manufacturing process, SMT pad locations tend to be slightly short of their expected locations.  

Long PCBs, of course, will have significantly greater shrinkage than short PCBs. 

 

In addition to PCB shrinkage, the electroformed stencil process uses Mylar film to create the 

stencil image.  The film is dimensionally unstable due to its susceptibility to temperature and 

humidity fluctuations.  Without tight temperature and humidity controls in the manufacturing 

area, shifts in aperture locations can occur during plotting of the Mylar film and during its use.   

 

Since the electroform process only produces the electroformed foil, it typically has to be 

mounted into a stencil frame.  During the electroform process, no tension is applied to the 

electroformed foil.  When mounted into a stencil frame, tension is applied to electroformed foil 

by the stencil frame’s polyester mesh.  This tension pulls on the foil causing slight shifts in the 

locations of the stencil apertures.  In most cases, the electroformed stencil aperture locations will 

be long, or further away from their expected locations.  If the PCB has SMT pad locations that 

are short of expected locations and the electroformed stencil has aperture locations further away 

than expected, there can be a significant shift, or misalignment, between the stencil apertures and 

PCB pads. 

 

A shift between the stencil aperture and PCB pad reduces the amount of solder paste in contact 

with the surface of the PCB pad. This lowers the adhesive force between the solder paste and 

PCB pad, effectively reducing the ability of the board to pull the paste from the stencil. 

Miniature components already have very low surface area ratios. The lower the surface area  

ratio, the more critical the alignment between the stencil aperture and PCB pad.  The Fine Grain 

stencil in this DOE was cut in the frame on the new LPKF high-power short-pulse fiber laser. 

The intent was to minimize stencil aperture registration errors, thereby increasing the alignment 

accuracy between the stencil and PCB. The results (27 position errors for the Fine Grain stencil 

and 2,307 position errors for the electroformed stencil) below show a marked improvement in 

aperture registration when compared to an electroformed stencil. 

 



Electroformed (left) and Fine Grain (right) Stencil Aperture Registration Accuracy 

2,307 position errors with the electroformed stencil and 27 with the Fine Grain stencil 

 

 

Conclusion 

As advancements continue in component and PCB technologies, will the stencil technology of 

today provide current and future solutions to the challenging assembly issues faced by OEMs 

and CMs? Is electroformed technology the right solution or have new developments in stencil 

laser and material technologies caught up with and surpassed the electroformed technology of 

today? 

 

The answer to these important questions is in our view an unequivocal “yes.” Stencil laser and 

material technologies have advanced to the point where laser-cut stencil performance is beyond 

that of current electroformed technology. Using the new LPKF high-power short-pulse fiber 

laser technology and the new Fine Grain material, stencil performance is significantly improved 

over electroformed, especially when printing miniature components. Improvements in stencil 

laser and material technologies have lead to significant improvements in solder paste release 

down to a surface area ratio of 0.45 as well as improved aperture registration accuracy. These 

improvements are critical to meeting future requirements when printing miniature components 

like 01005s.  The technology summary is as follows:  

 

 



Stencil Technology Summary 

 

Technology Minimum 

Surface Area 

Ratio 

Cost Material Aperture 

Registration 

Accuracy 

Chemical Etch 0.66 Low SS, Alloy Moderate 

Traditional 

Laser-Cut 

0.66 Low SS, Alloy Very High 

Traditional 

Laser-Cut 

0.55 Low Slic™ Very High 

Electroformed 0.5 High Electroformed 

Nickel 

High 

Advanced Laser-

Cut 

0.45 Medium Fine Grain Very High 

 

At a cost savings of 30-50 percent compared to electroformed, the ability to produce multi-

thickness (step) stencils, and the option of same day turn times, Fine Grain stencils, cut with the 

new fiber lasers, are a marked improvement compared to the high-performance stencil solutions 

available today. OEMs and CMs can get the performance they need while reducing costs and 

meeting critical delivery schedules. The new stencil laser and material technologies available 

today give stencil manufacturers the tools and materials needed to supply an ever-changing 

industry for many years to come. 
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